
resty-threadpool
Re-inventing Apache httpd in nginx
Julien Desgats - Cloudflare

1

About me

● Working at Cloudflare London
● Edge performance team
● Worked on the nginx-based HTTP(S) proxies before that
● Code in Lua for more than 10 years

2

Cloudflare HTTP(S) infrastructure

3

Cloudflare HTTP(S) infrastructure

● Based on a customized build of nginx
● Heavily relies on lua-nginx-module
● Every requests runs Lua for:

○ Configuration loading
○ Security checks

■ IP reputation
■ Custom firewall rules
■ Web Application Firewall

○ Upstream selection
○ Response processing
○ Logging logic

4

Web Application Firewall (WAF)

● Scan requests for known attacks
○ SQL/shell/... injection attempts
○ XSS
○ Known vulnerabilities in server software

● Rule sets typically have 1,000s of rules to run
● Each has access to

○ Request path and arguments (e.g. /foo.html?arg=value%...)
○ Headers (User-Agent, Referer, …)
○ Body
○ Metadata (client IP, geolocation, …)

● Popular options: ModSecurity, Naxsi, lua-resty-waf

5

Web Application Firewall at Cloudflare

● Used by millions of domains
● Historically based onto ModSecurity

○ Now WAF rules are transpiled to Lua+PCRE
● Average processing time 2 to 4 ms
● Some requests are longer
● Sometimes cause slowness for other requests

6

Simple example: network requests

7

https://example.com/

https://cloudflare.com/

Thread based proxy

8

Thread based proxy
GET /
Host: example.com

9

Thread based proxy
GET /
Host: example.com

CONNECT example.com

10

Thread based proxy
GET /
Host: example.com

CONNECT example.com

GET /index.html
Host: cloudflare.com

11

Thread based proxy
GET /
Host: example.com

CONNECT example.com

SEND "GET…"

GET /index.html
Host: cloudflare.com

12

Thread based proxy
GET /
Host: example.com

CONNECT example.com

CONNECT cloudflare.com

SEND "GET…"

GET /index.html
Host: cloudflare.com

13

Thread based proxy
GET /
Host: example.com

CONNECT example.com

CONNECT cloudflare.com

SEND "GET…"

SEND "GET …"

GET /index.html
Host: cloudflare.com

14

Thread based proxy
GET /
Host: example.com

CONNECT example.com

CONNECT cloudflare.com

SEND "GET…"

SEND "GET …"

RECV "HTTP/1.1 200 OK..."

HTTP/1.1 200 OK

GET /index.html
Host: cloudflare.com

15

Event loop approach

16

Event loop approach
GET /
Host: example.com

17

Event loop approach
GET /
Host: example.com

CONNECT example.com

18

Event loop approach
GET /
Host: example.com

GET /index.html
Host: cloudflare.com

CONNECT example.com

19

Event loop approach
GET /
Host: example.com

GET /index.html
Host: cloudflare.com

CONNECT example.com

CONNECT cloudflare.com

20

Event loop approach
GET /
Host: example.com

GET /index.html
Host: cloudflare.com

CONNECT example.com

CONNECT cloudflare.com

SEND "GET…"

21

Event loop approach
GET /
Host: example.com

GET /index.html
Host: cloudflare.com

CONNECT example.com

CONNECT cloudflare.com

SEND "GET…"

SEND "GET …"

22

Event loop approach
GET /
Host: example.com

GET /index.html
Host: cloudflare.com

CONNECT example.com

CONNECT cloudflare.com

SEND "GET…"

SEND "GET …"

RECV "HTTP/1.1 200 OK..."

HTTP/1.1 200 OK 23

nginx architecture

● Event loop approach
● Multiple worker processes

○ Each has its own event loop
○ Each accept and process connections
○ Limited shared state

● Designed primarily to be used as a (caching) proxy or a static file server

24

Issues with event loops

25

Issues with event loops
GET /
Host: example.com

26

Issues with event loops
GET /
Host: example.com

CONNECT example.com

27

Issues with event loops
GET /
Host: example.com

POST /login
Host: bank.com

W
A
F

CONNECT example.com

28

Issues with event loops
GET /
Host: example.com

POST /login
Host: bank.com

W
A
F

CONNECT example.com

CONNECT bank.com
29

Issues with event loops
GET /
Host: example.com

POST /login
Host: bank.com

W
A
F

CONNECT example.com

CONNECT bank.com
30

Worker processes

CONNECT

Issues with event loops

31

Worker processes

CONNECT

Issues with event loops

32

Worker processes

CONNECT

Issues with event loops

33

Worker processes

CONNECT

SEND "GET /…"
RECV "...Connection: keep-alive…"

Issues with event loops

34

Worker processes

CONNECT

SEND "GET /…"
RECV "...Connection: keep-alive…"

SEND "GET /style.css…"
RECV "...Connection: keep-alive…"

Issues with event loops

35

Here comes Lua

● lua-nginx-module allows to script various parts of the request pipeline
● Use cases:

○ Complex routing
○ Complex ACL
○ Dynamic load balancing
○ ...
○ NOT an application server

● Foundation of OpenResty, a batteries-included nginx bundle
● The event-loop design maps well with Lua coroutines

36

Key takeaways

● Event loops have some advantages over threads:
○ Less scheduling overhead
○ Less memory overhead

● They have to be approached as a soft real-time environment
○ Running CPU-heavy work will slow down the entire system

37

Blocking calls are already a known issue

● nginx support thread pools since v1.7.11

(24 March 2015)

○ Used for blocking I/O (read/write/sendfile)

○ Benchmarks report up to 9x gain

● Each worker has its own thread pool

● Threads do not interact directly with the request:

accessing the request state is unsafe

Idea: run our CPU-bound work into these threads!

Master process

Threads

Worker processes

38

Issues with event loops
GET /
Host: example.com

POST /login
Host: bank.com

W
A
F

CONNECT example.com

CONNECT bank.com
39

How does it look now?

40

GET /
Host: example.com

CONNECT example.com

How does it look now?

41

POST /login
Host: bank.com

GET /
Host: example.com

CONNECT example.com

How does it look now?

42

POST /login
Host: bank.com

GET /
Host: example.com

CONNECT example.com

How does it look now?

SEND "..."

HTTP/1.1 200 OK

RECV "..."

43

POST /login
Host: bank.com

GET /
Host: example.com

CONNECT example.com

How does it look now?

SEND "..."

HTTP/1.1 200 OK

RECV "..."

 CONNECT bank.com
44

Let's run Lua into threads
thread_pool upper_pool threads=1;
...
http {
 thread_pool_init_by_lua upper_pool "
 ngx.log(ngx.INFO, 'optional code run once when the thread is spawned...')
 ";
 thread_pool_process_by_lua upper_pool "
 local arg = ...
 ngx.log(ngx.INFO, 'got a request to uppercase \"', arg, '\"')
 return arg:upper()
 ";
 ...
 server {
 listen 8080;
 location / {
 content_by_lua_block {
 local tp = require "resty.threadpool"
 ngx.say(assert(tp.upper_pool:push_task("foo")))
 }
 }
 }
}

45

Let's run Lua into threads

● Each thread will have its own persistent Lua VM
● Thread pools are focused on doing one task
● Expose the same(ish) API as the regular Lua callbacks

○ Functions are reused when possible
○ Otherwise, emulate their behaviour (ngx.re.*)

● Some APIs are not exposed at all:
○ Asynchronous calls (ngx.socket.*, ngx.sleep, …)
○ APIs that access the request or response

● Values are serialized to move between event loop and threads

46

Benchmark: image resizing proxy

47

<html>

 <head>

 <title>Hello, Lua in Moscow</title>

 <link rel="stylesheet" href="style.css">

 </head>

 <body>

 ...

 ...

 ...

 </body>

</html>

Event loop implementation
local magick = require "magick"

-- load watermark
local watermark = assert(magick.load_image(
 ngx.config.prefix() .. "/root/lua_moscow_logo.jpg"))
watermark:resize(25, 25)

return function()
 local path = string.format("%s/root/%s",
 ngx.config.prefix(),
 ngx.var.uri:match("^/thumb/(.+)"))
 ngx.log(ngx.DEBUG, "resizing ", path)

 local img = assert(magick.load_image(path))
 img:resize(300, 200)
 img:composite(watermark, 0, 0)

 ngx.print(img:get_blob())
end

48

Event loop implementation
local magick = require "magick"

-- load watermark
local watermark = assert(magick.load_image(
 ngx.config.prefix() .. "/root/lua_moscow_logo.jpg"))
watermark:resize(25, 25)

return function()
 local path = string.format("%s/root/%s",
 ngx.config.prefix(),
 ngx.var.uri:match("^/thumb/(.+)"))
 ngx.log(ngx.DEBUG, "resizing ", path)

 local img = assert(magick.load_image(path))
 img:resize(300, 200)
 img:composite(watermark, 0, 0)

 ngx.print(img:get_blob())
end

49

The (fast) static
image has to wait

Thread implementation
-- thread_pool_process_by_lua
local magick = require "magick"

-- load watermark
local watermark = assert(magick.load_image(
 ngx.config.prefix() ..
 "/root/lua_moscow_logo.jpg"))
watermark:resize(25, 25)

return function(path)
 ngx.log(ngx.DEBUG, "resizing ", path)

 local img = assert(magick.load_image(path))
 img:resize(300, 200)
 img:composite(watermark, 0, 0)

 return assert(img:get_blob())
end

-- content_by_lua
return function()
 local threadpool = require("resty.threadpool")
 local path = string.format("%s/root/%s",
 ngx.config.prefix(),
 ngx.var.uri:match("^/thumb/(.+)"))

 ngx.print(assert(threadpool.resize:push_task(path)))
end

50

Thread implementation
-- thread_pool_process_by_lua
local magick = require "magick"

-- load watermark
local watermark = assert(magick.load_image(
 ngx.config.prefix() ..
 "/root/lua_moscow_logo.jpg"))
watermark:resize(25, 25)

return function(path)
 ngx.log(ngx.DEBUG, "resizing ", path)

 local img = assert(magick.load_image(path))
 img:resize(300, 200)
 img:composite(watermark, 0, 0)

 return assert(img:get_blob())
end

-- content_by_lua
return function()
 local threadpool = require("resty.threadpool")
 local path = string.format("%s/root/%s",
 ngx.config.prefix(),
 ngx.var.uri:match("^/thumb/(.+)"))

 ngx.print(assert(threadpool.resize:push_task(path)))
end

51
No more blocking

Benchmark time!

● Direct resizing runs 120 workers
● Threaded resizing runs 20 workers with 6 threads each
● Run with 100, 200, 400 simultaneous connections for 180 seconds
● Timeout is 10 seconds

52

TTFB for small files using direct mode

53

100 connections 200 connections 400 connections

0% 90% 99% 99.9% 99.99% 99.999%
0

2,500

5,000

7,500

10,000

Percentile

La
te

nc
y

(m
illi

se
co

nd
s)

TTFB for small files using threads

54

100 connections 200 connections 400 connections

0% 90% 99% 99.9% 99.99% 99.999%
0

2,500

5,000

7,500

10,000

Percentile

La
te

nc
y

(m
illi

se
co

nd
s)

TTFB for thumbnails using direct mode

55

100 connections 200 connections 400 connections

0% 90% 99% 99.9% 99.99% 99.999%
0

2,500

5,000

7,500

10,000

Percentile

La
te

nc
y

(m
illi

se
co

nd
s)

TTFB for thumbnails using threads

56

100 connections 200 connections 400 connections

0% 90% 99% 99.9% 99.99% 99.999%
0

2,500

5,000

7,500

10,000

Percentile

La
te

nc
y

(m
illi

se
co

nd
s)

Timeout rate

Mode Type 100 200 400

Direct
Static 0.03% 0.05% 0.18%

Thumb 0.07% 0.15% 0.69%

Thread
Static 0.00% 0.00% 0.00%

Thumb 0.00% 20.83% 67.51%

57

Why???

● ngnix event loop uses epoll
● Connections are not distributed fairly

○ Some even consider it is

"fundamentally broken"

● Worker processes are now idle most of the time
● They will happily accept new connections

58

https://idea.popcount.org/2017-02-20-epoll-is-fundamentally-broken-12/

Band-aid: reuseport

● TCP option originally meant to allow multiple listen on the same port
● Internally reuseport create a separate accept queue for each listening socket
● Once a new connection is queued

somewhere, it is stuck there
● Only support inet sockets

59

Small files with reuseport

60

400 connections 200 connections 100 connections

0% 90% 99% 99.9% 99.99% 99.999%
0

2,500

5,000

7,500

10,000

Percentile

La
te

nc
y

(m
illi

se
co

nd
s)

Thumbnails with reuseport

61

400 connections 200 connections 100 connections

0% 90% 99% 99.9% 99.99% 99.999%
0

2,500

5,000

7,500

10,000

Percentile

La
te

nc
y

(m
illi

se
co

nd
s)

Timeout rate

Mode Type 100 200 400

Direct
Static 0.03% 0.05% 0.18%

Thumb 0.07% 0.15% 0.69%

Thread
Static 0.00% 0.00% 0.00%

Thumb 0.00% 20.83% 67.51%

Thread +
reuseport

Static 0.00% 0.00% 0.00%

Thumb 0.00% 0.11% 14.87%

62

Key takeaways

● Threads don't magically bring you more compute power
○ CPU-bound work still have to run
○ Might make things worse for overloaded servers

● epoll unbalance is very tricky
● Reuseport might not be great either
● Used carefully, thread pools will free the event loop

○ More consistent latencies
○ Lightweight request stay fast

63

So… what about the WAF?

● Each nginx worker now have multiple WAF threads
● If the task queue is full, we fall back to the event loop (like before)
● Argument passing:

○ All the needed data is packed into a table
○ The small request bodies are passed as strings
○ Bigger ones in temp files, only the path is passed to the thread

● Cloudflare runs a custom kernel that overcomes the epoll issues

64

Production results - event loop block

65

Without WAF With WAF

Production results - TTFB

66

Without WAF With WAF

Production results - accept latency

67

Current state

● Open-sourcing is in progress
○ Most of the relevant ngx.* APIs are available
○ (Ab)use private APIs at the moment

● Only the request/response pattern is implemented
● Data serialization creates a lot of duplication
● Tested only on Linux
● Issues with epoll unbalance

68

That's all folks!

● Links: http://tiny.cc/resty-threadpool

69

	resty-threadpool
	About me
	Cloudflare HTTP(S) infrastructure
	Slide 4
	Web Application Firewall (WAF)
	Web Application Firewall at Cloudflare
	Simple example: network requests
	Thread based proxy (1)
	Thread based proxy (2)
	Thread based proxy (3)
	Thread based proxy (4)
	Thread based proxy (5)
	Thread based proxy (6)
	Thread based proxy (7)
	Thread based proxy (8)
	Event loop approach (1)
	Event loop approach (2)
	Event loop approach (3)
	Event loop approach (4)
	Event loop approach (5)
	Event loop approach (6)
	Event loop approach (7)
	Event loop approach (8)
	nginx architecture
	Issues with event loops_clipboard0 (1)
	Issues with event loops_clipboard0 (2)
	Issues with event loops_clipboard0 (3)
	Issues with event loops_clipboard0 (4)
	Issues with event loops_clipboard0 (5)
	Issues with event loops_clipboard0 (6)
	Issues with event loops (1)
	Issues with event loops (2)
	Issues with event loops (3)
	Issues with event loops (4)
	Issues with event loops (5)
	Here comes Lua
	Key takeaways
	Blocking calls are already a known issue
	Slide 39
	How does it look now? (1)
	How does it look now? (2)
	How does it look now? (3)
	How does it look now? (4)
	How does it look now? (5)
	Let's run Lua into threads
	Let's run Lua into threads
	Benchmark: image resizing proxy
	Event loop implementation (1)
	Event loop implementation (2)
	Thread implementation (1)
	Thread implementation (2)
	Benchmark time!
	TTFB for small files using direct mode
	TTFB for small files using threads
	TTFB for thumbnails using direct mode
	TTFB for thumbnails using threads
	Timeout rate
	Why???
	Band-aid: reuseport
	Small files with reuseport
	Thumbnails with reuseport
	Timeout rate
	Key takeaways
	So… what about the WAF?
	Production results - event loop block
	Production results - TTFB
	Production results - accept latency
	Current state
	That's all folks!

