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About me

● Working at Cloudflare London
● Edge performance team
● Worked on the nginx-based HTTP(S) proxies before that
● Code in Lua for more than 10 years
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Cloudflare HTTP(S) infrastructure
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Cloudflare HTTP(S) infrastructure

● Based on a customized build of nginx
● Heavily relies on lua-nginx-module
● Every requests runs Lua for:

○ Configuration loading
○ Security checks

■ IP reputation
■ Custom firewall rules
■ Web Application Firewall

○ Upstream selection
○ Response processing
○ Logging logic
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Web Application Firewall (WAF)

● Scan requests for known attacks
○ SQL/shell/... injection attempts
○ XSS
○ Known vulnerabilities in server software

● Rule sets typically have 1,000s of rules to run
● Each has access to

○ Request path and arguments (e.g. /foo.html?arg=value%...)
○ Headers (User-Agent, Referer, …)
○ Body
○ Metadata (client IP, geolocation, …)

● Popular options: ModSecurity, Naxsi, lua-resty-waf
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Web Application Firewall at Cloudflare

● Used by millions of domains
● Historically based onto ModSecurity

○ Now WAF rules are transpiled to Lua+PCRE
● Average processing time 2 to 4 ms
● Some requests are longer
● Sometimes cause slowness for other requests
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Simple example: network requests
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https://example.com/

https://cloudflare.com/



Thread based proxy
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Thread based proxy
GET /
Host: example.com
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Thread based proxy
GET /
Host: example.com

CONNECT example.com
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Thread based proxy
GET /
Host: example.com

CONNECT example.com

CONNECT cloudflare.com

SEND "GET…"

SEND "GET …"

RECV "HTTP/1.1 200 OK..."

HTTP/1.1 200 OK

GET /index.html
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Event loop approach
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Event loop approach
GET /
Host: example.com
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nginx architecture

● Event loop approach
● Multiple worker processes

○ Each has its own event loop
○ Each accept and process connections
○ Limited shared state

● Designed primarily to be used as a (caching) proxy or a static file server
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Issues with event loops
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Worker processes

CONNECT

Issues with event loops
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Worker processes

CONNECT

Issues with event loops
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Worker processes

CONNECT

Issues with event loops
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Worker processes

CONNECT

SEND "GET /…"
RECV "...Connection: keep-alive…"

Issues with event loops
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Worker processes

CONNECT

SEND "GET /…"
RECV "...Connection: keep-alive…"

SEND "GET /style.css…"
RECV "...Connection: keep-alive…"

Issues with event loops
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Here comes Lua

● lua-nginx-module allows to script various parts of the request pipeline
● Use cases:

○ Complex routing
○ Complex ACL
○ Dynamic load balancing
○ ...
○ NOT an application server

● Foundation of OpenResty, a batteries-included nginx bundle
● The event-loop design maps well with Lua coroutines
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Key takeaways

● Event loops have some advantages over threads:
○ Less scheduling overhead
○ Less memory overhead

● They have to be approached as a soft real-time environment
○ Running CPU-heavy work will slow down the entire system
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Blocking calls are already a known issue

● nginx support thread pools since v1.7.11

(24 March 2015)

○ Used for blocking I/O (read/write/sendfile)

○ Benchmarks report up to 9x gain

● Each worker has its own thread pool

● Threads do not interact directly with the request:

accessing the request state is unsafe

Idea: run our CPU-bound work into these threads!

Master process

Threads

Worker processes
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Issues with event loops
GET /
Host: example.com

POST /login
Host: bank.com

W
A
F

CONNECT example.com

CONNECT bank.com
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How does it look now?
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HTTP/1.1 200 OK

RECV "..."
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Let's run Lua into threads
thread_pool upper_pool threads=1;
...
http {
    thread_pool_init_by_lua upper_pool "
        ngx.log(ngx.INFO, 'optional code run once when the thread is spawned...')
    ";
    thread_pool_process_by_lua upper_pool "
        local arg = ...
        ngx.log(ngx.INFO, 'got a request to uppercase \"', arg, '\"')
        return arg:upper()
    ";
    ...
    server {
        listen       8080;
        location / {
            content_by_lua_block {
                local tp = require "resty.threadpool"
                ngx.say(assert(tp.upper_pool:push_task("foo")))
            }
        }
    }
}
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Let's run Lua into threads

● Each thread will have its own persistent Lua VM
● Thread pools are focused on doing one task
● Expose the same(ish) API as the regular Lua callbacks

○ Functions are reused when possible
○ Otherwise, emulate their behaviour (ngx.re.*)

● Some APIs are not exposed at all:
○ Asynchronous calls (ngx.socket.*, ngx.sleep, …)
○ APIs that access the request or response

● Values are serialized to move between event loop and threads
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Benchmark: image resizing proxy
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<html>

 <head>

   <title>Hello, Lua in Moscow</title>

   <link rel="stylesheet" href="style.css">

 </head>

 <body>

   ...

     <img src="/thumb/moon.jpg" />

   ...

     <img src="moon.jpg" width="50%" />

   ...

 </body>

</html>



Event loop implementation
local magick = require "magick"

-- load watermark
local watermark = assert(magick.load_image(
   ngx.config.prefix() .. "/root/lua_moscow_logo.jpg"))
watermark:resize(25, 25)

return function()
 local path = string.format("%s/root/%s",
     ngx.config.prefix(),
     ngx.var.uri:match("^/thumb/(.+)"))
 ngx.log(ngx.DEBUG, "resizing ", path)

 local img = assert(magick.load_image(path))
 img:resize(300, 200)
 img:composite(watermark, 0, 0)

 ngx.print(img:get_blob())
end
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Event loop implementation
local magick = require "magick"

-- load watermark
local watermark = assert(magick.load_image(
   ngx.config.prefix() .. "/root/lua_moscow_logo.jpg"))
watermark:resize(25, 25)

return function()
 local path = string.format("%s/root/%s",
     ngx.config.prefix(),
     ngx.var.uri:match("^/thumb/(.+)"))
 ngx.log(ngx.DEBUG, "resizing ", path)

 local img = assert(magick.load_image(path))
 img:resize(300, 200)
 img:composite(watermark, 0, 0)

 ngx.print(img:get_blob())
end
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Thread implementation
-- thread_pool_process_by_lua
local magick = require "magick"

-- load watermark
local watermark = assert(magick.load_image(
   ngx.config.prefix() ..
   "/root/lua_moscow_logo.jpg"))
watermark:resize(25, 25)

return function(path)
 ngx.log(ngx.DEBUG, "resizing ", path)

 local img = assert(magick.load_image(path))
 img:resize(300, 200)
 img:composite(watermark, 0, 0)

 return assert(img:get_blob())
end

-- content_by_lua
return function()
 local threadpool = require("resty.threadpool")
 local path = string.format("%s/root/%s",
     ngx.config.prefix(),
     ngx.var.uri:match("^/thumb/(.+)"))

 ngx.print(assert(threadpool.resize:push_task(path)))
end
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Thread implementation
-- thread_pool_process_by_lua
local magick = require "magick"

-- load watermark
local watermark = assert(magick.load_image(
   ngx.config.prefix() ..
   "/root/lua_moscow_logo.jpg"))
watermark:resize(25, 25)

return function(path)
 ngx.log(ngx.DEBUG, "resizing ", path)

 local img = assert(magick.load_image(path))
 img:resize(300, 200)
 img:composite(watermark, 0, 0)

 return assert(img:get_blob())
end

-- content_by_lua
return function()
 local threadpool = require("resty.threadpool")
 local path = string.format("%s/root/%s",
     ngx.config.prefix(),
     ngx.var.uri:match("^/thumb/(.+)"))

 ngx.print(assert(threadpool.resize:push_task(path)))
end
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Benchmark time!

● Direct resizing runs 120 workers
● Threaded resizing runs 20 workers with 6 threads each
● Run with 100, 200, 400 simultaneous connections for 180 seconds
● Timeout is 10 seconds
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TTFB for small files using direct mode
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TTFB for small files using threads
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TTFB for thumbnails using direct mode
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TTFB for thumbnails using threads
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Timeout rate

Mode Type 100 200 400

Direct
Static 0.03% 0.05% 0.18%

Thumb 0.07% 0.15% 0.69%

Thread
Static 0.00% 0.00% 0.00%

Thumb 0.00% 20.83% 67.51%
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Why???

● ngnix event loop uses epoll
● Connections are not distributed fairly

○ Some even consider it is 

"fundamentally broken"

● Worker processes are now idle most of the time
● They will happily accept new connections
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Band-aid: reuseport

● TCP option originally meant to allow multiple listen on the same port
● Internally reuseport create a separate accept queue for each listening socket
● Once a new connection is queued

somewhere, it is stuck there
● Only support inet sockets
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Small files with reuseport
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Thumbnails with reuseport
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Timeout rate

Mode Type 100 200 400

Direct
Static 0.03% 0.05% 0.18%

Thumb 0.07% 0.15% 0.69%

Thread
Static 0.00% 0.00% 0.00%

Thumb 0.00% 20.83% 67.51%

Thread +
reuseport

Static 0.00% 0.00% 0.00%

Thumb 0.00% 0.11% 14.87%
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Key takeaways

● Threads don't magically bring you more compute power
○ CPU-bound work still have to run
○ Might make things worse for overloaded servers

● epoll unbalance is very tricky
● Reuseport might not be great either
● Used carefully, thread pools will free the event loop

○ More consistent latencies
○ Lightweight request stay fast
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So… what about the WAF?

● Each nginx worker now have multiple WAF threads
● If the task queue is full, we fall back to the event loop (like before)
● Argument passing:

○ All the needed data is packed into a table
○ The small request bodies are passed as strings
○ Bigger ones in temp files, only the path is passed to the thread

● Cloudflare runs a custom kernel that overcomes the epoll issues

64



Production results - event loop block
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Without WAF                            With WAF



Production results - TTFB
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Without WAF                            With WAF



Production results - accept latency
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Current state

● Open-sourcing is in progress
○ Most of the relevant ngx.* APIs are available
○ (Ab)use private APIs at the moment

● Only the request/response pattern is implemented
● Data serialization creates a lot of duplication
● Tested only on Linux
● Issues with epoll unbalance
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That's all folks!

● Links: http://tiny.cc/resty-threadpool 
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